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Chapter 1

Introduction

The Integro-Difference equation model (here abbreviated as IDEM 1) is dynamics-based spatio-temporal aiming to model
diffusion and convection by making the value of a process a weighted average of it’s previous time, plus noise.
[NOTE: I intend to create a more thorough background for the introduction here.]

1Historically, this has been abbreviated as IDE. However, with that abbreviation almost universally meaning ‘Integrated Development Environment’, here,
we choose to include the ‘M’ in the abbreviation.
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Chapter 2

Integro-difference Based Dynamics

As common and widespread as the problem is, spatio-temporal modelling still presents a great deal of difficulty. Inherently,
Spatio-Temporal datasets are almost always high-dimensional, and repeated observations are usually not possible.
Traditionally, the problem has been tackled by the moments (usually the means and covariances) of the process in order to make
inference (Wikle, Zammit-Mangion, and Cressie (2019), for example, call this ‘descriptive’ modelling). While this method
can be sufficient for many problems, there are many cases where we are underutilizing some knowledge of the underlying
dynamic systems involved. For instance, in temperature models, we know that temperature has movement (convection) and
spread (diffusion), and that the state at any given time will depend on its state at previous times 1. We call models which make
use of this ‘dynamic’ models.
A general way of writing such hierarchical dynamical models might be

𝑌𝑡+1(⋅) = ℳ𝑡(𝑌0(⋅), … , 𝑌𝑡(⋅)) + 𝜔𝑡(⋅), 𝑡 = 0, … , 𝑇 − 1,
𝑍𝑡(⋅) = 𝒪𝑡(𝑌𝑡(⋅)) + 𝑥(⋅)⊺𝜷 + 𝜖𝑡(⋅), 𝑡 = 1, … , 𝑇 .

This describes the scalar random fields 𝑍𝑡(⋅), 𝑌𝑡(⋅) ∈ ℝ over the space 𝒟 ⊂ ℛ𝑑 , which are the observed data and unobserved
dynamic process, respectively. ℳ𝑡 here is a non-random ‘propagation operator’, defining how the process evolves with respect
to it’s previous state(s), and 𝒪𝑡 is a non-random ‘observation operator’, defining how observations of a given process state
are taken. Both these fields have random (usually time-independent) additive random fields, 𝜔𝑡(⋅), 𝜖𝑡(⋅), and we also include
non-random measured linear covariate terms 𝑥(⋅)⊺𝜷.
If we discretize the space into 𝑛 $spatial locations {𝒔𝑖}𝑖=1,…,𝑛, assume the operator are linear, assert a Markov condition, and
assume the errors are all normal, we get a simple linear dynamic system;

𝒀𝑡+1 = 𝑀𝑡𝒀𝑡 + 𝝎𝑡, 𝑡 = 0, … , 𝑇 − 1,
�̃�𝑡 = 𝑂𝑡𝒀𝑡 + 𝝐𝑡, 𝑡 = 1, … , 𝑇 ,

(2.1)

where we have written 𝒀𝑡 = (𝑌𝑡(𝒔1), … , 𝑌𝑡(𝒔𝑛)), and similar for 𝒁𝑡, 𝝐𝑡 and 𝝎𝑡, and we have written �̃�𝑡 = 𝒁𝑡 + 𝑋⊺𝜷. This is a
well-known type of system, the process 𝑌 can easily be estimated either directly of with a Kalman filter/smoother and variants,
which will be discussed later.
However, this model is restrictive and high-dimensional; 𝑀𝑡, the primary quantities which needs estimation, is of dimension
𝑛 × 𝑛, of which there are 𝑇 matrices to be estimated. Even if we allow the propagation matrix to be invariant in time, we can
still only make predictions at the stations {𝒔𝑖}.

1at least, in a discrete-time scenario. Integro-difference based mechanics can be derived from continuous-time convection-diffusion processes, see Liu,
Yeo, and Lu (2022)
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This motivates a different approach; in particular, one which allows us to estimate the random field at arbitrary points 𝑌𝑡(𝒔)
using some spectral decomposition, which would alleviate these problems.
The Integro-difference equation model attempts to generalise Equation 2.1 into the continuous space by replacing the discrete
linear 𝑀𝑡 by a continuous integral equivalent;

𝑌𝑡+1(𝒔) = ∫𝒟𝑠
𝜅𝑡(𝒔, 𝒓)𝑌𝑡(𝒓)𝑑𝒓 + 𝜔𝑡(𝒔), 𝑡 = 0, … , 𝑇 − 1,

𝑍𝑡(𝒔) = 𝑌𝑡(𝒔) + 𝑋(𝒔)⊺𝜷 + 𝜖𝑡(𝒔), 𝑡 = 1, … , 𝑇 .
(2.2)

Where 𝜔𝑡(𝒔) is a small scale gaussian variation with no temporal dynamics (Cressie and Wikle 2015 call this a ‘spatially
descriptive’ component), 𝑿(𝒔) are spatially varying covariates (for example, in a large-scale climate scenario, this might be
latitude, concentration of some chemical/element like nitrogen) 𝜅(𝒔, 𝒓) is the driving ‘kernel’ function, and 𝜖𝑡 is a Gaussian
white noise ‘measurement error’ term.
Our operator is now ℳ(𝑌𝑡(𝒔)) = ∫𝒟𝑠

𝜅𝑡(𝒔, 𝒓)𝑌𝑡(𝒓)𝑑𝒓, which can model diffusion and convection by choosing the shape of 𝜅
(which, from now on, we will assume to be temporally invariant). This kernel defines how each point in space is affected by
every other point in space at the previous time. For example, if we choose a Gaussian-like shape,

𝜅(𝒔, 𝒓; 𝒎, 𝑎, 𝑏) = 𝑎 exp(−1
𝑏 |𝒔 − 𝒓 + 𝒎(𝒔)|2

) ,

then the ‘flow’ would be in the direction of −𝒎(𝒔), and the diffusion would be controlled by 𝑏 and 𝑎. This creates a ‘spatially
variant kernel’, where the direction of flow varies across the space, as in Figure 2.1.

(a) Invariant Kernel Direction (b) Invariant Kernel Strength

Figure 2.1: A spatially variant kernel across the region [0, 1]×[0, 1]. The kernel direction is shown on the left, and on the right
is the amount that each point affects the point (0.5, 0.5), marked with a red cross. ‘Flow’ is allowed to vary by a function 𝒎(𝒔)
which is chosen randomly using a basis expansion (see Section 3.3). The other two parameters are set at 𝑎 = 150, 𝑏 = 0.2.
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Chapter 3

Spectral Representations

The key to being able to computationally work with IDEMs, as perhaps originally made byWikle and Cressie (1999), is to work
with the spectral decomposition of the process, in order to coerce the model hierarchy into a more familiar linear dynamical
system form, like Equation 2.1.
This kind of dimension-reduction allows us to parametrise spatial fields with as few or as many parameters as we want.

3.1 Process decomposition
Choose a complete class of spatial spectral basis functions, {𝜙𝑖(⋅) ∶ 𝒟 → ℝ}𝑖=1,…, and decompose the process spatial field at
each time;

𝑌𝑡(𝒔) ≈
𝑟

∑
𝑖=1

𝛼𝑖,𝑡𝜙𝑖(𝒔), 𝑡 = 0, … , 𝑇 . (3.1)

where we truncate the expansion at some 𝑟 ∈ ℕ. Notice that we can write this in vector/matrix form, where we consider the
vector field 𝝓(⋅) = (𝜙1(⋅), … , 𝜙𝑟(⋅))⊺; considering times 𝑡 = 1, 2, … , 𝑇 , we set

𝝓(𝒔) = (𝜙1(𝒔), 𝜙2(𝒔), … , 𝜙𝑟(𝒔))⊺,
𝜶𝑡 = (𝛼1,𝑡, 𝛼2,𝑡, … , 𝛼𝑟,𝑡)⊺. (3.2)

Now, (Equation 3.1) gives us, for any 𝒔 ∈ 𝒟 ,

𝑌 (𝒔; 𝑡) ≈ 𝝓⊺(𝒔)𝛼(𝑡). (3.3)

We can effectively now work exclusively with 𝜶𝑡 = (𝛼1,𝑡, … , 𝛼𝑟,𝑡)⊺. To do so, we need to find the evolution equation of 𝜶𝑡, as
given below.

Theorem 3.1.1 (Spectral form of the state evolution). Define the Gram matrix;

Ψ ≔ ∫𝒟𝑠
𝝓(𝒔)𝝓(𝒔)⊺𝑑𝒔. (3.4)

Then, the basis coefficients evolve by the equation
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𝜶𝑡+1 = 𝑀𝜶𝑡 + 𝜼𝑡, (3.5)

where 𝑀 = Ψ−1 ∫ ∫ 𝝓(𝒔)𝜅(𝒔, 𝒓)𝝓(𝒓)⊺𝑑𝒓𝑑𝒔 and 𝜼𝑡 = Ψ−1 ∫ 𝝓(𝒔)𝜔𝑡(𝑠)𝑑𝒔.

Proof. (Adapting from Dewar, Scerri, and Kadirkamanathan 2008), write out the process equation, (Equation 2.2), using
the first equation of (Equation 3.3);

𝑌𝑡+1(𝒔) = 𝝓(𝒔)⊺𝛼𝑡+1 = ∫𝒟𝑠
𝜅(𝒔, 𝒓)𝝓(𝒓)⊺𝜶𝑡𝑑𝒓 + 𝜔𝑡(𝒔),

We then multiply both sides by 𝝓(𝑠) and integrate over 𝒔

∫𝒟𝑠
𝝓(𝒔)𝝓(𝒔)⊺𝑑𝒔𝜶𝑡+1 = ∫ 𝝓(𝒔) ∫ 𝜅(𝒔, 𝒓)𝝓(𝒓)⊺𝑑𝒓𝑑𝒔 𝜶𝑡 + ∫ 𝝓(𝒔)𝜔𝑡(𝑠)𝑑𝒔

Ψ𝜶𝑡+1 = ∫ ∫ 𝝓(𝒔)𝜅(𝒔, 𝒓)𝝓(𝒓)⊺𝑑𝒓𝑑𝒔 𝜶𝑡 + ∫ 𝝓(𝒔)𝜔𝑡(𝑠)𝑑𝒔.

So, finally, pre-multipling by the inverse of the gram matrix, Ψ−1 (Equation 3.4), we arrive at the result.

3.2 Spectral form of the Process Noise
We still have to set out what the process noise, 𝜔𝑡(𝒔), and it’s spectral counterpart, 𝜼𝑡, are. Dewar, Scerri, and Kadirkamanathan
(2008) fix the variance of 𝜔𝑡(𝒔) to be uniform and uncorrelated across space and time, with 𝜔𝑡(𝒔) ∼ 𝒩 (0, 𝜎2) It is then easily
shown that 𝜼𝑡 is also normal, with 𝜼𝑡 ∼ 𝒩 (0, 𝜎2Ψ−1).
However, in practice, we simulate in the spectral domain; that is, if we want to keep things simple, it would make sense to
specify (and fit) the distribution of 𝜼𝑡, and compute the variance of 𝜔𝑡(𝒔) if needed.

Lemma 3.2.1. Let 𝜼𝑡 ∼ 𝒩 (0, Σ𝜂), and ℂov[𝜼𝑡, 𝜼𝑡+𝜏 ] = 0, ∀𝜏 > 0. Then 𝜔𝑡(𝒔) has covariance

ℂov[𝜔𝑡(𝒔), 𝜔𝑡+𝜏 (𝒓)] =
{

𝝓(𝒔)⊺Σ𝜂𝝓(𝒓) if 𝜏 = 0
0 else

Proof. Consider Ψ𝜼𝑡, and consider the case 𝜏 = 0. It is clearly normal, with zero expectation and variance (using
Equation 3.4),

𝕍ar[Ψ𝜼𝑡] = Ψ 𝕍ar[𝜼𝑡]Ψ⊺ = ΨΣ𝜂Ψ⊺,

= ∫𝒟𝑠
𝝓(𝒔)𝝓(𝒔)⊺𝑑𝒔 Σ𝜂 ∫𝒟𝑠

𝝓(𝒓)𝝓(𝒓)⊺𝑑𝒓

= ∫ ∫𝒟 2
𝑠

𝝓(𝒔)𝝓(𝒔)⊺ Σ𝜂 𝝓(𝒓)𝝓(𝒓)⊺𝑑𝒓𝑑𝒔

(3.6)
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Since it has zero expectation, we also have

𝕍ar[Ψ𝜼𝑡] = 𝔼[(Ψ𝜼𝑡)(Ψ𝜼𝑡)⊺] = 𝔼[Ψ𝜼𝑡𝜼
⊺
𝑡 Ψ⊺]

= 𝔼 [∫𝒟𝑠
𝝓(𝒔)𝜔𝑡(𝒔)𝑑𝒔 ∫𝒟𝑠

𝝓(𝒓)⊺𝜔𝑡(𝒓)𝑑𝒓]

= ∫ ∫𝒟 2
𝑠

𝝓(𝒔) 𝔼[𝜔𝑡(𝒔)𝜔𝑡(𝒓)] 𝝓(𝒓)⊺𝑑𝒔𝑑𝒓.

(3.7)

We can see that, comparing (Equation 3.6) and (Equation 3.7), we have

ℂov[𝜔𝑡(𝒔), 𝜔𝑡(𝒓)] = 𝔼[𝜔𝑡(𝒔)𝜔𝑡(𝒓)] = 𝝓(𝒔)⊺Σ𝜂𝝓(𝒓).

Since, once again, 𝔼[𝝎𝑡(𝒔)] = 0.
For the 𝜏 ≠ 0 case, it is simple to show that the covariance is 0.

3.3 Kernel Parameterisations
Next is the part of the system, which defines the dynamics; the kernel function, 𝜅. There are a few ways to handle the kernel.
One of the most obvious is to expand it out into a spectral decomposition as well;

𝜅 ≈ ∑
𝑖

𝛽𝑖𝜓(𝒔, 𝒓).

This can allow for a wide range of interestingly shaped kernel functions, but see how these basis functions must now act on
ℝ2 × ℝ2; to get a wide enough space of possible functions, we would likely need many terms in the spectral expansion.
A much simpler approach would be to simply parametrise the kernel function, to 𝜅(𝒔, 𝒓, 𝜽𝜅). We then establish a simple shape
for the kernel (e.g. Gaussian) and rely on very few parameters (for example, scale, shape, offsets). The example kernel used in
the jaxidem is a Gaussian-shape kernel;

𝜅(𝒔, 𝒓; 𝒎, 𝑎, 𝑏) = 𝑎 exp(−1
𝑏 |𝒔 − 𝒓 + 𝒎|2

) .

Of course, this kernel lacks spatial dependence. We can add spatial variance back by adding dependence on 𝒔 to the parameters,
for example, varying the offset term as 𝒎(𝒔). Of course, now we are back to having entire functions as parameters, but taking
the spectral decomposition of the parameters we actually want to be spatially variant seems like a reasonable middle ground
(Cressie and Wikle 2015). The actual parameters of such a spatially-variant kernel are then the spectral coefficients for the
expansion of any spatially variant parameters, as well as any constant parameters. This is precisely what is plotting in Figure 2.1,
where the spectral coefficients are randomly sampled from a multivariate normal distribution;

𝒎(𝒔) =
(

∑𝑟𝑚
𝑖=1 𝜙𝜅,𝑖(𝒔)𝑚(𝑥)

𝑖
∑𝑟𝑚

𝑖=1 𝜙𝜅,𝑖(𝒔)𝑚(𝑦)
𝑖 )

,

where 𝑚(𝑥)
𝑖 and 𝑚(𝑦)

𝑖 are coefficients for the x and y coordinates respectively, and 𝜙𝜅,𝑖(𝒔) are basis functions (e.g. bisquare 1)
functions in Figure 2.1).

1The bisquare functions, here, 𝜙𝑖(𝒔) = [1 − ‖𝒔−𝒄𝑖‖
𝑤𝑖

]2 ⋅ 𝐼(‖𝒔 − 𝒄𝑖‖ < 𝑤𝑖) for 𝑖 ‘centroids’ or ‘knots’, 𝒄𝑖 ∈ 𝒟 , each with ‘radius’ 𝑤𝑖
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3.4 IDEM as a linear dynamical system
To summarise, we have taken a truncated spectral decomposition to write the Integro-difference equation model as a more
traditional linear dynamical system form (Equation 3.5). All that is left is to include our observations in our system.
Lets assume that at each time 𝑡 there are 𝑛𝑡 observations at locations 𝒔1,𝑡, … , 𝒔𝑛𝑡,𝑡. We write the vector of the process at these
points as 𝒀 (𝑡) = (𝑌 (𝑠1,𝑡; 𝑡), … , 𝑌 (𝑠𝑛𝑡,𝑡; 𝑡))⊺, and, in it’s expanded form 𝒀𝑡 = Φ𝑡𝜶𝑡, where Φ ∈ ℝ𝑟×𝑛𝑡 is

{Φ𝑡}𝑖,𝑗 = 𝜙𝑖(𝑠𝑗,𝑡).

For the covariates, we write the matrix 𝑋𝑡 = (𝑿(𝒔1,𝑡), … , 𝑿(𝒔1=𝑛𝑡,𝑡)
⊺. We then have

𝒁𝑡 = Φ𝜶𝑡 + 𝑋𝑡𝜷 + 𝝐𝑡, 𝑡 = 1, … , 𝑇 ,
𝜶𝑡+1 = 𝑀𝜶𝑡 + 𝜼𝑡, 𝑡 = 0, 1, … , 𝑇 − 1,

𝑀 = ∫𝒟𝑠
𝝓(𝒔)𝝓(𝒔)⊺𝑑𝒔 ∫𝒟 2

𝑠
𝝓(𝒔)𝜅(𝒔, 𝒓; 𝜽𝜅)𝝓(𝒓)⊺𝑑𝒓𝑑𝒔,

Writing �̃�𝑡 = 𝒁𝑡 − 𝑋𝑡𝜷,

�̃�𝑡 = Φ𝑡𝜶𝑡 + 𝝐𝑡, 𝑡 = 1, 2, … , 𝑇 ,
𝜶𝑡+1 = 𝑀𝜶𝑡 + 𝜼𝑡, 𝑡 = 0, 1, … , 𝑇 − 1. (3.8)

We should also initialise 𝜶0 ∼ 𝒩 𝑟(𝒎0, Σ0), and fix simple distributions to the noise terms,

𝝐𝑡
iid∼ 𝒩𝑛obs (0, Σ𝜖),

𝜼𝑡
iid∼ 𝒩𝑅(0, Σ𝜂),

which are independent in time.
As in, for example, (Wikle and Cressie 1999), Equation 3.8 is now in a traditional enough form that the Kalman filter can be
applied to filter and compute many necessary quantities for inference, including the marginal likelihood. We can use these
quantities in either an EM algorithm or a Bayesian approach, or directly maximise the marginal data likelihood
We now move on to an example simulation of this kind of model using its spectral decomposition and jaxidem.

3.5 Example Simulation
We can now use the above to simulate easily from such models; once we have chosen the appropriate decompositions, we
simply compute 𝑀 and propagate 𝜶𝑡 as we would when simulating any other linear dynamic system. We then use the spectral
coefficients to generate 𝑌𝑡(𝒔) and 𝑍𝑡(𝒔) in the obvious way.
jaxidem implements this in the function sim_idem, or through the more user-friendly method idem.IDEM.simulate. An
object of the IDEM class contains all the necessary information about basis decompositions, and the simulate methods calls
simIDEM without compromising its jit-ability (although just-in-time computation obviously isn’t as important for simulation,
the jit-ed function could save compile time if someone want to simulate from many models).
The gen_example_idem method creates a simple IDEM object without many required parameters;
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key = jax.random.PRNGKey(42)
keys = jax.random.split(key, 3)

model = idem.gen_example_idem(keys[0], k_spat_inv=False)
# Simulation
T = 35
nobs = 50

coords = jax.random.uniform(
keys[1],
shape=(nobs, 2),
minval=0,
maxval=1,

)

times = jnp.repeat(jnp.arange(1, T + 1), coords.shape[0])
rep_coords = jnp.tile(coords, (T, 1))
x = rep_coords[:,0]
y = rep_coords[:,1]

process_data, obs_data = model.simulate(keys[2], x, y, times)

The resulting objects are of class st_data, containing a couple of niceties for handling spatio-temporal data, while still storing
all data as JAX arrays. For example, the show_plot, save_plot and save_gif methods provide easy plotting;

process_data.save_plot('figure/process_data_example.png')
obs_data.save_plot('figure/obs_data_example.png')
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(a) Process Simulation

(b) Observation Simulation

Figure 3.1: Example simulations from an Integro-difference Equation Model. Kernel is generated with spatially varying
flow terms, generated by bisquare basis functions with randomly generated coefficient. Note that some artefacts from the
decomposition are visible, such as a faint chequerboard pattern in the process.
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Chapter 4

The Kalman filter, and its many flavours

The Kalman filter gives us linear estimates for the distribution of 𝜶𝑟 ∣ {𝒁𝑡 = 𝒛𝑡}𝑡=0,...,𝑟 in any dynamical system like Equa-
tion 2.1. Now that we have written the IDEM in this form, this filter can now help compute estimates for the moments of the
state 𝜶𝑡. The Kalman filter also computes the marginal data likelihood, 𝜋({𝒛𝑡}𝑡=1,…,𝑇 ∣ 𝜽), where 𝜽 are the model parameters.
This allows us to perform maximum-likelihood estimation (as well as any other likelihood-based method of optimization). We
will not prove the Kalman filter here, (for that, see, for example, Shumway, Stoffer, and Stoffer 2000).
Since it’s initial formulation in the 50s by a variety of authors (Kálmán included) there have beenmany variations of the Kalman
filter proposed, even as recently as this decade with the temporally paralellised Kalman filter, more technically a variant of the
information form of the Kalman filter, by Särkkä and Garcı́a-Fernández (2020).

4.1 The Kalman Filter
Firstly, we should establish some notation. Write

𝑚𝑖∣𝑗 = 𝔼[𝜶𝑖 ∣ {𝒁𝑡 = 𝒛𝑡}𝑡=0,…,𝑗],
𝑃𝑖∣𝑗 = 𝕍ar[𝜶𝑖 ∣ {𝒁𝑡 = 𝒛𝑡}𝑡=0,…,𝑗],

𝑃𝑖,𝑗∣𝑘 = ℂov[𝜶𝑖, 𝜶𝑘 ∣ {𝒁𝑡 = 𝒛𝑡}𝑡=0,…,𝑘].

For the initial terms, we choose Bayesian-like prior moments 𝑚0∣0 = 𝑚0 and 𝑃0∣0 = Σ0. For convenience and generality, we
write Σ𝜂 and Σ𝜖 for the variance matrices of the process and observations. Note that, if the number of observations change at
each time point (for example, due to missing data), then Σ𝜖 should be time varying (even in its shape); we could either always
keep it as uncorrelated so that Σ𝜖 = diag(𝜎2

𝜖 ), or perhaps put some kind of distance-dependant covariance function to it.
To move the filter forward, that is, given 𝑚𝑡∣𝑡 and 𝑃𝑡∣𝑡, to get 𝑚𝑡+1∣𝑡+1 and 𝑃𝑡+1∣𝑡+1, we first predict

𝒎𝑡+1∣𝑡 = 𝑀𝒎𝑡∣𝑡,
𝑃𝑡+1∣𝑡 = 𝑀𝑃𝑡∣𝑡𝑀⊺ + Σ𝜂 ,

(4.1)

then we add our new information, update, with 𝑧𝑡;

𝒎𝑡+1∣𝑡+1 = 𝒎𝑡+1∣𝑡 + 𝐾𝑡+1𝒆𝑡+1
𝑃𝑡+1∣𝑡+1 = [𝐼 − 𝐾𝑡+1Φ𝑡+1]𝑃𝑡+1∣𝑡

(4.2)

where 𝐾𝑡+1 is the Kalman gain;
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𝐾𝑡+1 = 𝑃𝑡+1∣𝑡Φ
⊺
𝑡+1[Φ𝑡+1𝑃𝑡+1∣𝑡Φ

⊺
𝑡+1 + Σ𝜖]−1, 𝑡 = 0, … , 𝑇 − 1,

and 𝒆𝑡+1 are the prediction errors

𝒆𝑡+1 = ̃𝒛𝑡+1 − Φ𝑡+1𝒎𝑡+1∣𝑡, 𝑡 = 1, … , 𝑇 .

Starting with 𝑚0 and 𝑃0, we can then iteratively move across the data to eventually compute 𝑚𝑇 ∣𝑇 and 𝑃𝑇 ∣𝑇 .
Assuming Gaussian all random variables here are Gaussian, this is the optimal mean-square estimators for these quantities, but
even outside of the Gaussian case, these are optimal for the class of linear operators.
We can compute the marginal data likelihood alongside the Kalman filter using the prediction errors 𝒆𝑡. These, under the
assumptions we have made about 𝜼𝑡 and 𝝐𝑡 being normal, are also normal with zero mean and variance

𝕍ar[𝒆𝑡] = Σ𝑡 = Φ𝑡𝑃𝑡∣𝑡−1Φ⊺
𝑡 + Σ𝜖 . (4.3)

Therefore, the log-likelihood at each time is

ℒ(𝑍 ∣ 𝜽) = −1
2 ∑ log det(Σ𝑡(𝜽)) − 1

2 ∑ 𝒆𝑡(𝜽)⊺Σ𝑡(𝜽)−1𝒆𝑡(𝜽) − 𝑛𝑡
2 log(2 ∗ 𝜋).

Summing these across time, we get the log likelihood for all the data.
A simplified example of the Kalman filter function, written to be JAX compatible, used in the package is this;
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@jax.jit
def kalman_filter(m_, P_0, M, PHI_obs, Sigma_eta, Sigma_eps, ztildes):

nbasis = m_0.shape[0]
nobs = ztildes.shape[0]

@jax.jit
def step(carry, z_t):

m_tt, P_tt, _, _, ll, _ = carry

# predict
m_pred = M @ m_tt
P_pred = M @ P_tt @ M.T + Sigma_eta

# Update
# Prediction Errors
eps_t = z_t - PHI_obs @ m_pred

Sigma_t = PHI_obs @ P_pred @ PHI_obs.T + Sigma_eps
# Kalman Gain
K_t = (jnp.linalg.solve(Sigma_t, PHI_obs)@ P_pred.T).T

m_up = m_pred + K_t @ eps_t
P_up = (jnp.eye(nbasis) - K_t @ PHI_obs) @ P_pred

# likelihood of epsilon, using cholesky decomposition
ll_new = ll - 0.5 * n * jnp.log(2*jnp.pi) - \

0.5 * jnp.log(jnp.linalg.det(Sigma_t)) -\
0.5 * e.T @ jnp.linalg.solve(Sigma_t, e)

return (m_up, P_up, m_pred, P_pred, ll_new, K_t), (m_up, P_up, m_pred, P_pred, ll_new, K_t,)

carry, seq = jl.scan(
step,
(m_0, P_0, m_0, P_0, 0, jnp.zeros((nbasis, nobs))),
ztildes.T,

)

return (carry[4], seq[0], seq[1], seq[2][1:], seq[3][1:], seq[5][1:])

For the documentation of the method provided by the package, see filter_smoother_functions.kalman_filter.

4.2 The Information Filter
In some computational scenarios, it is beneficial to work with vectors of consistent dimension. In Python JAX, the efficient
scan method works only with such arrays; JAX has no support for jagged arrays, and traditional for loops will likely lead to
long compile times when jit-compiled. Although there are some tools in JAX to get around this problem (namely the jax.tree
functions which allow mapping over PyTrees), scan is still a large problem; since the Kalman filter is, at it’s core, a scan-type
operation (scanning over the data), this causes a large problem when the observation dimension is changing, as is frequent with
many spatio-temporal data.
But it is possible to re-write the Kalman filter in a way which is compatible with this kind of data. The ‘information filter’
(sometimes called inverse Kalman filter or other names) involves transforming the data into its ‘information form’, which will
always have consistent dimension, allowing us to avoid jagged scans.
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The information filter is simply the Kalman filter re-written to use the Gaussian distribution’s canonical parameters 1, those
being the information vector and the information matrix. If a Gaussian distribution has mean 𝝁 and variance matrix Σ, then
the corresponding information vector and information matrix is 𝜈 = Σ−1𝜇 and 𝑄 = Σ−1, correspondingly.

Theorem 4.2.1. The Kalman filter can be rewritten in information form as follows (for example, Khan 2005). Write

𝑄𝑖∣𝑗 = 𝑃 −1
𝑖∣𝑗

𝝂𝑖∣𝑗 = 𝑄𝑖∣𝑗𝒎𝑖∣𝑗

and transform the observations into their ‘information form’, for 𝑡 = 1, … , 𝑇

𝐼𝑡 = Φ⊺
𝑡 Σ−1

𝜖 Φ𝑡,
𝑖𝑡 = Φ⊺

𝑡 Σ−1
𝜖 𝒛𝑡.

(4.4)

The prediction step now becomes

𝝂𝑡+1∣𝑡 = (𝐼 − 𝐽𝑡)𝑀−1𝝂𝑡∣𝑡
𝑄𝑡+1∣𝑡 = (𝐼 − 𝐽𝑡)𝑆𝑡

(4.5)

where 𝑆𝑡 = 𝑀−⊺𝑄𝑡∣𝑡𝑀−1 and 𝐽𝑡 = 𝑆𝑡[𝑆𝑡 + Σ−1
𝜂 ]−1.

Updating is now as simple as adding the information-form observations;

𝝂𝑡+1∣𝑡+1 = 𝝂𝑡+1∣𝑡 + 𝑖𝑡+1
𝑄𝑡+1∣𝑡+1 = 𝑄𝑡+1∣𝑡 + 𝐼𝑡+1.

(4.6)

Proof in Appendix (Section A.2.)
We can see that the information form of the observations (Equation 4.4) will always have the same dimension 2. For our
purposes, thismeans that jax.lax.scanwill work after we ‘informationify’ the data, which can be done using jax.tree.map.
This is implemented in the functions information_filter and information_filter_indep (for uncorrelated errors).
There are other often cited advantages to filtering in this form. It can be quicker that the traditional form in certain cases,
especially when the observation dimension is bigger than the state dimension (since you solve a smaller system of equations
with [𝑆𝑡 + Σ𝜂]−1 in the process dimension instead of [Φ𝑡𝑃𝑡+1∣𝑡Φ

⊺
𝑡 + Σ𝜖]−1 in the observation dimension) (Assimakis, Adam,

and Douladiris 2012).
The other often mentioned advantage is the ability to use a flat prior for 𝛼0; that is, we can set 𝑄0 as the zero matrix, without
worrying about an infinite variance matrix. While this is indeed true, it is actually possible to do the same with the Kalman
filter by doing the first step analytically, see Section A.3.
As with the Kalman filter, it is also possible to get the data likelihood in-line as well. Again, we would like to stick with things
in the state dimension, so working directly with the prediction errors 𝒆𝑡 should be avoided. Luckily, by multiplying the errors
by Φ⊺

𝑡 Σ−1
𝜖 , we can define the ‘information errors’ 𝜾𝑡;

𝜾𝑡 = Φ⊺
𝑡 Σ−1

𝜖 𝒆𝑡 = Φ⊺
𝑡 Σ−1

𝜖 ̃𝒛𝑡 − Φ⊺
𝑡 Σ−1

𝜖 Φ𝑡𝑚𝑡∣𝑡−1

= 𝑖𝑡 − 𝐼𝑡𝑄−1
𝑡∣𝑡−1𝝂𝑡∣𝑡−1.

1that is, the parameters of the Gaussian distribution in it’s exponential family form
2that being the process dimension, previously labelled 𝑟, the number of basis functions used in the expansion of the process
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The variance of this quantity is also easy to find;

𝕍ar[𝜾𝑡] = Φ⊺
𝑡 Σ−1

𝜖 𝕍ar[𝒆𝑡]Σ−1
𝜖 Φ𝑡

= Φ⊺
𝑡 Σ−1

𝜖 [Φ𝑡𝑃𝑡∣𝑡−1Φ⊺
𝑡 + Σ𝜖]Σ−1

𝜖 Φ𝑡

= Φ⊺
𝑡 Σ−1

𝜖 Φ𝑡𝑄−1
𝑡∣𝑡−1Φ⊺

𝑡 Σ−1
𝜖 Φ𝑡Φ

⊺
𝑡 Σ−1

𝜖 Φ𝑡

= 𝐼𝑡𝑄−1
𝑡∣𝑡−1𝐼⊺

𝑡 + 𝐼𝑡 =∶ Σ𝜄,𝑡.

Noting that 𝜾 clearly still has mean zero, this allows us once again to compute the log likelihood, this time through 𝜾

ℒ(𝑧𝑡 ∣ 𝜽) = −1
2 ∑ log det(Σ𝜄,𝑡(𝜽)) − 1

2 ∑ 𝜾𝑡(𝜽)⊺Σ𝜄,𝑡(𝜽)−1𝜾𝑡(𝜽) − 𝑟
2 log(2 ∗ 𝜋).

4.3 The Square-Root filters
In certain high-dimensional cases, the Kalman filter (and, indeed, the information filter) can encounter numerical stability
issues. For example, in the predict step of the standard Kalman filter, note the update step for the variance matrix

𝑃𝑡+1∣𝑡+1 = [𝐼 − 𝐾𝑡+1Φ𝑡+1]𝑃𝑡+1∣𝑡.

Somewhat masked within this equation is two (often very small) variance matrices subtracted from eachother. While an-
alytically, the result is still guaranteed to be positive (semi-)definite, when done in floating point arithmetic (especially in
single-precision or lower), the result can often be numerically indefinite. When the variances are very low (as they often be-
come in these Kalman filters), the eigenvalues come out very close to zero and can tick over to becoming negative erroneously.
This can lead to definiteness issues with all the other variance matrices, most crucially Σ𝑡 Equation 4.3. When this happens,
computation of the likelihood likely fails (certainly when such a computation involves a Cholesky decomposition). Even if
such is rare to happen with 64-bit precision, modern GPU hardware tends to be much more efficient with Single (32-bit) pre-
cision, so it may still be desirable to increase stability if it permits using a lower precision. The Square-root filter and the SVD
filter are such algorithms.

4.3.1 The Square-root Kalman filter
The square-root Kalman filter has it’s origins soon after the standard Kalman filter gained popularity (Kaminski, Bryson, and
Schmidt 1971). Of course, computational and memory constraints necessitated stable and memory-efficient approaches, while
today the standard Kalman filter (and, more recently, it’s parallel counterpart, to be covered in section [TBD]) usually suffice.
As its name suggests, this variant involves carriyng through the square roots of variances 3 instead of the variances themselves.
This leads to, at least in some sense, an increased precision, and we can always guarentee that, at least analytically, the square
of these square roots (the variances) are positive (semi-)definite.
While the square root filter has been known for a long time (even used during NASA’s Apollo program), more recently, (Tracy
2022) wrote it neatly in terms of the QR decomposition, and this is what we base the presentation on here.
The key observation used for this filter is that if we have the sum of two equations where a square root is known for both, it can
be written

3A matrix 𝐴 is said to be a ‘square root’ of a positive-definate matrix 𝑋 if 𝐴⊺𝐴 = 𝑋. Note that these square roots are not unique, but can be ‘rotated’ by
an arbitrary unitary matrix. The ‘canonical’ square root is the Cholesky factor, the unique upper (or occasionally lower) triangular square root. This can be
found for arbitraty square roots by taking the QR decomposition (or RQ decomposition), which effectively computes the upper-triangular square root, 𝑅, and
the unitary transformation 𝑄⊺ necessary to get there.
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𝑋 + 𝑌 = 𝐴⊺𝐴 + 𝐵⊺𝐵

= [𝐴⊺ 𝐵⊺] [
𝐴
𝐵]

Taking the QR decomposition of the vertical block yields QR, and since (𝑄𝑅)⊺ (𝑄𝑅) = 𝑅⊺𝑄⊺𝑄𝑅 = 𝑅⊺𝑅, so 𝑅 is a square
root of 𝑋 + 𝑌 . This motivates the following ‘QR operator’

q𝑟𝑅(𝐴, 𝐵),

as the matrix 𝑅 in the QR decomposition of the block matrix

[
𝐴
𝐵] .

Beginning with the Cholesky decomposition of the initial variances, 𝑃0 = 𝑈 ⊺
0 𝑈0, Σ𝜂 = 𝑈 ⊺

𝜂 𝑈𝜂 and Σ𝜖 = 𝑈 ⊺
𝜖 𝑈𝜖 the predict step

for the variance becomes

𝑈𝑡+1∣𝑡 = √𝑃𝑡+1∣𝑡 = qr𝑅(𝑈𝑡∣𝑡𝑀⊺, 𝑈𝜂),

with the step for the means being the same as before (Equation 4.1). The prediction errors, prediction variance and Kalman
gain are now

𝒆𝑡+1 = ̃𝒛𝑡 − Φ𝑡+1𝒎𝑡+1∣𝑡,
Σ𝑡+1 = Φ𝑡+1𝑃𝑡+1∣𝑡Φ

⊺
𝑡+1 + Σ𝜖 ,

√Σ𝑡+1 = 𝑈𝑒,𝑡+1 = qr𝑅(Φ𝑡+1𝑈𝑡+1∣𝑡, 𝑈𝜖),
𝐾𝑡+1 = 𝑃𝑡+1∣𝑡Φ

⊺
𝑡+1Σ−1

𝑡+1 = 𝑈 ⊺
𝑡+1∣𝑡𝑈𝑡+1∣𝑡Φ

⊺
𝑡+1(𝑈 ⊺

𝑒,𝑡+1𝑈𝑒,𝑡+1)−1

= (𝑈 −1
𝑒,𝑡+1𝑈 −⊺

𝑒,𝑡+1Φ𝑡+1𝑈 ⊺
𝑡+1∣𝑡𝑈𝑡+1∣𝑡)⊺

where the last equation for the Kalman gain can easily be solved with a computationally efficient triangular solve.
Finally, the update step for the mean is simply

𝒎𝑡+1∣𝑡+1 = 𝒎𝑡∣𝑡+1 + 𝐾𝑡+1𝒆𝑡+1.

However, for the update we use the so-called Joseph stabilised form (sometimes used in the derivation of the Kalman filter)

𝑃𝑡+1∣𝑡+1 = ℂov[𝜶𝑡 − 𝒎𝑡+1∣𝑡+1]
= ℂov[𝜶𝑡 − 𝒎𝑡∣𝑡+1 − 𝐾𝑡+1( ̃𝒛𝑡+1 − Φ𝑡+1𝒎𝑡+1∣𝑡)]
= ℂov[𝜶𝑡 − 𝒎𝑡∣𝑡+1 − 𝐾𝑡+1(Φ𝑡+1𝒎𝑡+1 + 𝝐𝑡+1 − Φ𝑡+1𝒎𝑡+1∣𝑡)]
= ℂov[(𝐼 − 𝐾𝑡+1Φ𝑡+1)(𝜶𝑡 − 𝒎𝑡+1∣𝑡) − 𝝐𝑡+1]
= (𝐼 − 𝐾𝑡+1Φ𝑡+1)ℂov[𝜶𝑡 − 𝒎𝑡+1∣𝑡](𝐼 − 𝐾𝑡+1Φ𝑡+1)⊺ + ℂov[𝝐𝑡+1]
= (𝐼 − 𝐾𝑡+1Φ𝑡+1)𝑃𝑡+1∣𝑡(𝐼 − 𝐾𝑡+1Φ𝑡+1)⊺ + Σ𝜖
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which is often simplified further to Equation 4.2, but as discussed that involves negation of two square root matrices; this
form is more complicated and involves more matrix computation, but guarentees that the result will be positive (semi-)definite.
Furthermore, this is also in a form that allows us to easily find the square root with the QR trick;

𝑈𝑡+1∣𝑡+1 = √𝑃𝑡+1∣𝑡+1 = qr𝑅(𝑈𝑡+1∣𝑡(𝐼 − 𝐾𝑡+1Φ𝑡+1)⊺, 𝑈𝜖).

Of course, from here, we can similarily easily compute the data likelihood using 𝑈𝑒,𝑡+1, using standard techniques; the multi-
variate normal likelihood is usually computed using the cholesky decomposition of the variance matrix anyway. The result is
an algorithm which is of a higher order than the standard Kalman filter, but the stability is often worth the comprimise. Once
jit-compiled, the function sqrt_filter_indep on a moderately sized IDEM (on a discrete GPU) on 64-bit precision 4 takes
approximately 23.5ms, compared to kalman_filter_indep taking approximately 7.8ms, achieving similar log-likelihoods
(whith some difference due to precision). However, running the code in 32-bit causes the Kalman filter likelihood computation
to fail, the square-root filter succeeds at a time of 7.0ms.

4.3.2 Square-root Information filter
Very similarily, we can write the information filter using the square roots of the information matrices. We will label roots of
‘information-type’ matrices with 𝑅, and ‘variance-type’ matrices (their inverse) with 𝑈 .

We now carry the data’s information matrix’s (Equation 4.4) square root as well, 𝑅(𝐼)
𝑡 = √(Φ⊺

𝑡 Σ−1
𝜖 Φ𝑡), with the same observa-

tion vector.
So, once again, beginning with the lower-triangular cholesky decomposition 𝑄0 = 𝑅⊺𝑅, and the upper-triangular Σ𝜂 = 𝑈 ⊺

𝜂 𝑈𝜂
and Σ𝜖 = 𝑈 ⊺

𝜖 𝑈𝜖 .
So, to predict step for the information matrix (Equation 4.5) becomes

𝑄𝑡+1∣𝑡 = (𝑀𝑄−1
𝑡∣𝑡 𝑀⊺ + Σ𝜂)−1

= (𝑀𝑅−1
𝑡∣𝑡 𝑅−⊺

𝑡∣𝑡 𝑀⊺ + 𝑈 ⊺
𝜂 𝑈𝜂)−1

= [(𝑀𝑅−1
𝑡∣𝑡 , 𝑈 ⊺

𝜂 ) (
𝑅−⊺

𝑡∣𝑡 𝑀⊺

𝑈𝜂 )]

−1

𝑅−1
𝑡+1∣𝑡 = qr𝑅(𝑅−⊺

𝑡∣𝑡 𝑀⊺, 𝑈𝜂)

(4.7)

This must now be explicitly inverted, which isn’t a big problem since it is upper-triangular.
The update on the information vector is now

𝝂𝑡+1∣𝑡 = 𝑄𝑡+1∣𝑡𝑀𝑄−1
𝑡∣𝑡 𝝂𝑡∣𝑡

= 𝑅⊺
𝑡+1∣𝑡𝑅𝑡+1∣𝑡𝑀𝑅−1

𝑡∣𝑡 𝑅−⊺
𝑡∣𝑡 𝝂𝑡∣𝑡,

(4.8)

which can be done, as in the square-root Kalman filter’s Kalman gain computation, using forward-solves.
Now the update step is

𝝂𝑡+1∣𝑡+1 = 𝝂𝑡+1∣𝑡 + 𝑖𝑡+1
𝑄𝑡+1∣𝑡+1 = 𝑄𝑡+1∣𝑡 + 𝐼𝑡+1

= 𝑅⊺
𝑡+1∣𝑡𝑅𝑡+1∣𝑡 + 𝑅(𝐼)⊺

𝑡+1 𝑅(𝐼)
𝑡+1

𝑅𝑡+1∣𝑡+1 = qr𝑅(𝑅𝑡+1∣𝑡, 𝑅(𝐼)
𝑡+1).

(4.9)

4which must be explicitely enabled in JAX
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4.4 Smoothing
Beyond the filtering, another task is smoothing. That is, filters estimate 𝒎𝑇 ∣𝑇 and 𝑃𝑇 ∣𝑇 , but there is use for estimating 𝒎𝑡∣𝑇 and
𝑃𝑡∣𝑇 for all 𝑡 = 0, … , 𝑇 .
We simply work backwards from 𝒎𝑇 ∣𝑇 and 𝑃𝑇 ∣𝑇 values using what is known as the Rauch-Tung-Striebel (RTS) smoother;

𝒎𝑡−1∣𝑇 = 𝒎𝑡−1∣𝑡−1 + 𝐽𝑡−1(𝒎𝑡∣𝑇 − 𝒎𝑡∣𝑡−1),
𝑃𝑡−1∣𝑇 = 𝑃𝑡−1∣𝑡−1 + 𝐽𝑡−1(𝑃𝑡∣𝑇 − 𝑃𝑡∣𝑡−1)𝐽 ⊺

𝑡−1,
(4.10)

where,

𝐽𝑡−1 = 𝑃𝑡−1∣𝑡−1𝑀⊺[𝑃𝑡∣𝑡−1]−1.

We can clearly see, then, that it is crucial to keep the values in Equation 4.1.
We can then also compute the lag-one cross-covariance matrices 𝑃𝑡,𝑡−1∣𝑇 using the Lag-One Covariance Smoother. This will
b useful, for example, in the expectation-maximisation algorithm later. From

𝑃𝑇 ,𝑇 −1∣𝑇 = (𝐼 − 𝐾𝑇 Φ𝑇 )𝑀𝑃𝑇 −1∣𝑇 −1,

we can compute the lag-one covariances

𝑃𝑡,𝑡−1∣𝑇 = 𝑃𝑡∣𝑡𝐽
⊺
𝑡−1 + 𝐽𝑡[𝑃𝑡+1,𝑡∣𝑇 − 𝑀𝑃𝑡−1∣𝑡−1]𝐽 ⊺

𝑡−1 (4.11)

These values can be used to implement the expectation-maximisation (EM) algorithm which will be introduced later.
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Chapter 5

EM Algorithm (NEEDS A LOT OFWORK,
PROBABLY IGNORE FOR NOW)

Instead of the marginal data likelihood, we may instead want to work with the ‘full’ likelihood, including the unobserved pro-
cess, 𝑙(𝒛(1), … , 𝒛(𝑇 ), 𝒀 (1), … , 𝒀 (𝑇 ) ∣ 𝜽), or, equivalently, 𝑙(𝒛(1), … , 𝒛(𝑡), 𝜶(1), … , 𝜶(𝑇 ) ∣ 𝜽). This is difficult to maximise
directly, but can be done with the EM algorithm, consisting of two steps, which can be shown to always increase the full
likelihood.
Firstly, the E step is to find the function

𝒬(𝜽; 𝜽′) = 𝔼𝒁(𝑡)∼𝑝(𝑍∣𝜶(𝑡),𝜽)[log 𝑝𝜽(𝑍(𝑇 ), 𝐴(𝑇 )) ∣ 𝑍(𝑇 )], (5.1)

where 𝑍(𝑇 ) = {𝒛𝑡}𝑡=0,…,𝑇 , 𝐴(𝑇 ) = {𝜶𝑡}𝑡=0,…,𝑇 and 𝐴(𝑇 −1) = {𝜶𝑡}𝑡=0,…,𝑇 −1. This approximates log 𝑝𝜃(𝑍(𝑇 ), 𝐴(𝑇 )).
Proposition 5.0.1. We have [NOTE: This may well be wrong in places…]

−2𝒬(𝜽; 𝜽′) = 𝔼𝑍(𝑇 )∼𝑝(𝑍∣𝐴(𝑇 ),𝜽′)[log 𝑝𝜽(𝑍(𝑇 ), 𝐴(𝑇 ) ∣ 𝑍(𝑇 ) = 𝑧(𝑇 ))]

𝑐= 𝜎2
𝜖 [

𝑇

∑
𝑡=0

𝒛⊺
𝑡 𝑧𝑡 − 2Φ𝑡(

𝑇

∑
𝑡=1

𝒛⊺
𝑡 𝒎𝑡∣𝑇 ) − 2(

𝑇

∑
𝑡=0

𝒛𝑇
𝑡 )𝑋𝑡𝜷

+ Φ⊺
𝑡 (

𝑇

∑
𝑡=0

tr{𝑃𝑡∣𝑇 − 𝒎𝑡∣𝑇 𝒎⊺
𝑡∣𝑇 })Φ𝑡 + 2𝑋𝑡𝜷Φ𝑡(

𝑇

∑
𝑡=0

𝒎𝑡∣𝑇 ) + (
𝑇

∑
𝑡=1

𝑋⊺
𝑡 𝜷⊺𝜷𝑋𝑡)]

+ tr{Σ−1
𝜂 [(

𝑇

∑
𝑡=1

𝑃𝑡∣𝑇 − 𝑚𝑡∣𝑇 ) − 2𝑀(
𝑇

∑
𝑡=1

𝑃𝑡,𝑡−1∣𝑇 − 𝒎𝑡−1,𝑇 𝒎⊺
𝑡∣𝑇 )

+ 𝑀(
𝑇

∑
𝑡=1

𝑃𝑡−1∣𝑇 − 𝒎𝑡−1∣𝑇 𝒎⊺
𝑡−1∣𝑇 )𝑀⊺]}

+ tr{Σ−1
0 [𝑃0∣𝑇 − 𝑚0∣𝑇 𝑚⊺

0∣𝑇 − 2𝒎0∣𝑇 𝒎0 + 𝒎0𝒎⊺
0]}

+ log(det(𝜎2𝑇
𝜖 Σ𝑇 +1

𝜂 Σ0))

(5.2)

Proof. See appendix.
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In the EM algorithm, we maximise the full likelihood by changing 𝜽 in order to increase (Equation 5.2), which can be shown to
guarantee that the Likelihood 𝐿(𝜽) also increases. The idea is then that repeatedly alternating between adjusting 𝜽 to increase
Equation 5.2, and then doing the filters and smoothers to obtain new values for 𝒎𝑡∣𝑇 , 𝑃𝑡∣𝑇 , and 𝑃𝑡,𝑡−1∣𝑇 .
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Chapter 6

Algorithm for Maximum Complete-data
Likelihood estimation

Overall, our algorithm for Maximum Likelihood estimation is:
1. Set 𝑖 = 0 and take an initial guess for the parameters we are considering, 𝜽0 = 𝜽𝑖
2. Starting from 𝒎0∣0 = 𝒎0, 𝑃0∣0 = Σ0, run the Kalman Filter to get 𝒎𝑡∣𝑡, 𝑃𝑡∣𝑡, and 𝐾𝑡 for all 𝑡 Equation 4.2,
3. Starting from 𝒎𝑇 ∣𝑇 , 𝑃𝑇 ∣𝑇 , run the Kalman Smoother to get 𝒎𝑡∣𝑇 , 𝑃𝑡∣𝑇 , and 𝐽𝑡 for all 𝑡 (Equation 4.10),
4. Starting from 𝑃𝑇 ,𝑇 −1∣𝑇 = (𝐼 − 𝐾𝑛𝐴𝑛)𝑀𝑃𝑇 −1∣𝑇 −1, run the Lag-One Smoother to get 𝒎𝑡,𝑡−1∣𝑇 and 𝑃𝑡,𝑡−1∣𝑇 for all 𝑡

Equation 4.11,
5. Use the above values to construct 𝒬(𝜽; 𝜽′) in Equation 5.2,
6. Maximise the function 𝒬(𝜽; 𝜽′) to get a new guess 𝜽𝑖+1, then return to step 2,
7. Stop once a certain criteria is met.
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Appendix A

Appendix

A.1 Woodbury’s identity
The following two sections will make heavy use of the Woodbury identity.

Lemma A.1.1 (Woodbury’s Identity). We have, for conformable matrices 𝐴, 𝑈, 𝐶, 𝑉 ,

(𝐴 + 𝑈𝐶𝑉 )−1 = 𝐴−1 − 𝐴−1𝑈(𝐶−1 + 𝑉 𝐴−1𝑈)−1𝑉 𝐴−1. (A.1)

Additionally, we have the variant

(𝐴 + 𝑈𝐶𝑉 )−1𝑈𝐶 = 𝐴−1𝑈(𝐶−1 + 𝑉 𝐴−1𝑈)−1. (A.2)

Proof. We only prove (Equation A.2), since various proofs of (Equation A.1) are well known (see, for example, the
Wikipedia page).
Simply multipliying (Equation A.1) by 𝐶𝑈 , (similar to Khan 2005, although there is an error in their proof)

(𝐴 + 𝑈𝐶𝑉 )−1𝑈𝐶 = 𝐴−1𝑈𝐶 − 𝐴−1𝑈(𝐶−1 + 𝑉 𝐴−1𝑈)−1𝑉 𝐴−1𝑈𝐶
= 𝐴−1𝑈𝐶 − 𝐴−1𝑈(𝐶−1 + 𝑉 𝐴−1𝑈)[(𝐶−1 + 𝑉 𝐴−1𝑈)𝐶 − 𝐼]
= 𝐴−1𝑈(𝐶−1 + 𝑉 𝐴−1𝑈)

as needed.

A.2 Proof of Theorem 4.2.1
Proof. Firstly, for the prediction step, using 𝑆𝑡 = 𝑀−⊺𝑄𝑡∣𝑡𝑀−1 and 𝐽𝑡 = 𝑆𝑡(Σ−1

𝜂 + 𝑆𝑡)−1 and the identities Equation A.1
and Equation A.2,
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𝑄𝑡+1∣𝑡 = 𝑃 −1
𝑡+1∣𝑡 = (𝑀𝑄−1

𝑡∣𝑡 𝑀⊺ + Σ𝜂)−1

= 𝑆𝑡 − 𝐽𝑡𝑆𝑡 = (𝐼 − 𝐽𝑡)𝑆𝑡,

where we used 𝐴 = 𝑀𝑄−1
𝑡∣𝑡 𝑀⊺, 𝐶 = Σ𝜂 and 𝑈 = 𝐶 = 𝐼 in Equation A.1. Thurthermore,

𝝂𝑡+1∣𝑡 = 𝑄𝑡+1∣𝑡𝒎𝑡+1∣𝑡

= 𝑄𝑡+1∣𝑡𝑀𝑄−1
𝑡∣𝑡 𝝂𝑡∣𝑡 = 𝑄𝑡+1∣𝑡(𝑀𝑄−1

𝑡∣𝑡 )𝝂𝑡∣𝑡

= (𝐼 − 𝐽𝑡)𝑀−⊺𝑄𝑡∣𝑡𝑀−1(𝑀𝑄−1
𝑡∣𝑡 )𝝂𝑡∣𝑡

= (𝐼 − 𝐽𝑡)𝑀−⊺𝝂𝑡∣𝑡.

For the update step,

𝑄𝑡+1∣𝑡+1 = 𝑃 −1
𝑡+1∣𝑡+1

= (𝑄−1
𝑡+1 − 𝑄−1

𝑡+1∣𝑡Φ
⊺
𝑡+1[Φ𝑡+1Σ𝜖Φ⊺

𝑡+1 + Σ𝜖]−1Φ𝑡+1𝑄−1
𝑡+1∣𝑡)

−1

= ((𝑄𝑡+1∣𝑡 + Φ⊺
𝑡+1Σ−1

𝜖 Φ𝑡+1)−1)−1 = 𝑄𝑡+1∣𝑡 + Φ⊺
𝑡+1Σ−1

𝜖 Φ𝑡+1
= 𝑄𝑡+1∣𝑡 + 𝐼𝑡+1.

Then, writing 𝒎𝑡+1∣𝑡+1 in terms of 𝑄𝑡+1∣𝑡 and 𝝂𝑡+1∣𝑡

𝒎𝑡+1∣𝑡+1 = 𝑄−1
𝑡+1∣𝑡𝝂𝑡+1∣𝑡 − 𝑄−1

𝑡+1∣𝑡Φ
⊺
𝑡+1[Φ𝑡+1𝑄−1

𝑡+1∣𝑡Φ
⊺
𝑡+1 + Σ𝜖]−1[ ̃𝒛𝑡+1 − Φ𝑡+1𝑄−1

𝑡+1∣𝑡𝝂𝑡+1𝑡]
= (𝑄−1

𝑡+1∣𝑡 − 𝑄−1
𝑡+1∣𝑡Φ

⊺
𝑡+1[Φ𝑡+1𝑄−1

𝑡+1∣𝑡Φ
⊺
𝑡+1 + Σ𝜖]−1Φ𝑡+1𝑄−1

𝑡+1∣𝑡)𝝂𝑡+1∣𝑡

+ 𝑄−1
𝑡+1∣𝑡Φ

⊺
𝑡+1[Φ𝑡+1𝑄−1

𝑡+1∣𝑡Φ
⊺
𝑡+1 + Σ𝜖]−1 ̃𝒛𝑡+1

= [𝑄𝑡+1∣𝑡 + 𝐼𝑡+1]−1𝝂𝑡+1∣𝑡

+ [𝑄𝑡+1∣𝑡 + 𝐼𝑡+1]−1Φ𝑡+1Σ−1
𝜖 ̃𝒛𝑡+1,

and now noting that 𝝂𝑡+1∣𝑡+1 = (𝑄𝑡+1∣𝑡 + 𝐼𝑡+1)𝒎𝑡+1∣𝑡+1, we complete the proof.

A.3 Truly Vague Prior with the Kalman Filter
It has been stated before that one of the large advantages of the information filter is the ability to use a completely vague prior
𝑄0 = 0. While this is true, it is actually possible to do this in the Kalman filter by ‘skipping’ the first step (contrary to some
sources, such as the Wikipedia page as of January 2025).

Theorem A.3.1. In the Kalman Filter (Section 4.1), if we allow 𝑃 −1
0 = 0, effectively setting infinite variance, and

assuming the propagator matrix 𝑀 is invertible, we have

𝒎1∣1 = (Φ⊺
1Σ−1

𝜖 Φ1)−1Φ1Σ−1
𝜖 ̃𝒛1,

𝑃1∣1 = (Φ⊺
1Σ−1

𝜖 Φ1)−1.
(A.3)

23



Therefore, starting with these values then continuing the filter as normal, we can perform the Kalman filter with ‘infinite’
prior variance.

[NOTE: The requirement that M be invertible should be droppable, see the proof below]

Proof. Unsurprisingly, the proof is effectively equivalent to proving the information filter and setting 𝑄0 = 𝑃 −1
0 = 0.

For the first predict step (Equation 4.1),

𝒎1∣0 = 𝑀𝒎0,
𝑃1∣0 = 𝑀𝑃0𝑀⊺ + Σ𝜂 .

By (Equation A.1),

𝑃 −1
1∣0 = Σ−1

𝜂 − Σ−1
𝜂 𝑀(𝑃 −1

0 + 𝑀⊺Σ−1
𝜂 𝑀)−1𝑀⊺Σ−1

𝜂

= Σ−1
𝜂 − Σ−1

𝜂 𝑀(𝑀⊺Σ−1
𝜂 𝑀)−1𝑀⊺Σ−1

𝜂

= Σ−1
𝜂 − Σ−1

𝜂 = 0.

So, moving to the update step (Equation 4.2),

𝒎1∣1 = 𝑀𝒎0 + 𝑃1∣0Φ1[Φ1𝑃1∣0Φ⊺
1 + Σ𝜖]−1( ̃𝒛1 − Φ𝑀𝒎0).

Applying (Equation A.2) with 𝐴 = 𝑃 −1
1∣0 , 𝑈 = Φ1, 𝑉 = Φ⊺

1, 𝐶 = Σ−1
𝜖 ,

𝒎1∣1 = 𝑀𝒎0 + (𝑃 −1
1∣0 + Φ⊺

1Σ−1
𝜖 Φ1)−1Φ⊺

1Σ−1
𝜖 ( ̃𝒛1 − Φ1𝑀𝒎0)

= 𝑀𝒎0 + (Φ⊺
1Σ−1

𝜖 Φ1)−1Φ⊺
1Σ−1

𝜖 ̃𝒛1 − (Φ⊺
1Σ−1

𝜖 Φ1)−1Φ⊺
1Σ−1

𝜖 Φ1𝑀𝒎0

= (Φ⊺
1Σ−1

𝜖 Φ1)−1Φ⊺
1Σ−1

𝜖 ̃𝒛1.

For the variance, we apply the (Equation A.1) with 𝐴 = 𝑃 −1
1∣0 , 𝑈 = Φ⊺

1, 𝑉 = Φ1, 𝐶 = Σ−1
𝜖 ,

𝑃1∣1 = (𝐼 − 𝑃1∣0Φ⊺
1[Σ𝜖 + Φ⊺

1𝑃1∣0Φ1]−1Φ1)𝑃1∣0

= (𝑃 −1
1∣0 + Φ⊺

1Σ−1
𝜖 Φ1)−1

= (Φ⊺
1Σ−1

𝜖 Φ1)−1,

as needed.

It is worth noting that (Equation A.3) seems to make a lot of sense; namely, we expect the estimate for 𝒎0 to look like a
correlated least squares-type estimator like this.
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